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SUPERSONIC FLUTTER OF PLANE, RECTANGULAR, ANISOTROPIC
HETEROGENEQUS STRUCTURES*

L, Librescu and Tr. Badoiu,

.Institute of Fluid Mechanics and.AeroSpatial‘Design,r'
Bucharest, Romania

1. Introduction

In a number of recent studies of the w@mercelastic stability
of plane héterogeneous panels constructed symmetrically from
orthotroplic layers, it was assumed that:

a) the principal axes of orthotropy of the material of each

layerﬂgbincides at every point wilth the panel's geometrical axes;

b) the panel is placed inna supersonic gas flow, and the
veloclity vector of the unperturbed flow 1s parallel to the diree-
tionwogl.

In what foldows, we shall analyze the problem of the flutter
of plane heterogeneous Structures constructed symmetrically from
orthobtropic layers, takling Into consilderation the effect of
arbitrary orlentation of the orthotropicity, as well as the ef-
fect of arbitrary orlentation of the gas flow (which 1s assumed
to the co%lanar) on the paneldsiflutter characteristics.

2. Geometrical and Isotropic Considerations, Baslc Equations

Let there be a plane rectangular plate {(a x b), whose outer
surface 1s exposed to a supersonle, coplanar, gas flow of ar-
bitrary direction (Fig. 1 b).
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N2 ! {7 The panel 1s assumed to be con-

.*iﬁ{i_ strucfed‘symmetrically_from 27 + 1

: : . (Z = 1,2,...) elastic layers whose
9’ material 1s assumed to be homogeneous
%, and orthotropic, and the principal

) axes (E(J),E(J))Jof the material of

2
each layer are assumed to be rotated

with respect to the geometrical axes (E71,E2)
5, : \ tnder the angle Q(J) (see Fig. 1 a)l.

] ' : But, as is well known (in this connection

xxsgi b . |see, for example, [1]1), in the case where the
G I__* componehts of the tensor of the modulli of
k;_ ‘ ——& — 7 elastlicity are referred to the panel's geo-

Fig. 1 b. metricalyaxes, which are assumed not to'
colncide with the principal axes of ortho-

tropy, the material of each layer is characterized by six

elastic constants, which corresponds to anisotropy of the elastic

symmetry type with respect to the surface £3 = const,

The method of Galerkin ceases to be an efficient instrument
for tackling the various problems of the elastostatics and
dynamics of pilane anisotropic panels (homogeneous or heterogeneous;
in this connection see Bert and Mayberry [2], Ashton [3] and
Waddoups [4]), as well as the problem of the supersoniciflutter of
plane anisotropic panels (see Calligeros and Dugundjl [5] and

Ketter [6]).

On the other hand, the method of Raylelgh-Ritz, used 1in con-
nection with the principlé of the minimum of potential energy,

! The structure's geometrical and physical mechanlcal symmetry
with respect toithe panel's median plane also includes the values
of the orientation angles of the orthotroplclty of the material
ofthe symmetric layers.



turns out to be a suitable and efficient instrument foretackling
the above-mentioned problems. This is the method that we too
shall use 1ln analyzing the stated problem.

In this manner, adopting the hypothesis of Love-Kimchoff for
the structure in the aggregate, the energy functional (see

Ambartsumian [T7]) is given by
where

: de=U-—W, i (1
..,‘ 1

’ a b - .
= “—S S [ Dy (w 43)*+ 2Dy, W W e Dy (w, 59)? +
0 Y0 : )

+ 4 D4 (w0 15)? +_ U Dygw, 33 + Do, 22} W12 —
— Thiw, )® - Tihw, p)?1dE, A&, (2)

e

represents the total potential energy due to transversal bending /237
and the locads Tglwand ng in the plane of the plate (these are
assumeditobbe positive in compression), and

W ﬂS"prw&al dlﬁa (21)

ov0

is the potential energy due to the transversal lcads;

————— -

Diz"—"
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n; :-+ 1
1{;{ T B — 8 (i, =1,2,6) (3)

represents'the bending strength, which can be expressed in ferms

of thewconstant ﬁik{‘:(@!‘;k = 1,2) referred to the principal axes
(gij),géj)) and the angles ®(j) with the aid of equations (5) from
[1], adapted for the .case of'tﬁe‘theoﬁﬁ'of'é&mh@tri&akiy’¢6HétF&Eted'
structures. | o - B



In the case of a supersonii¢, coplanar, gas flow of arbltrary
direction A, the aerodynamic pressure will be given by

‘ J-A . P dw ‘ '
7 [az +Ue (agi oos A+H}:SIDA)J (4

- ——— .

Then the total transversal lcoad p(El,Eg,t) that is operative in
the energy functional 1s expressed by

b -

/ P(Enaz:t}:““%[%-*'v' (é‘w s A+ sin A)]—-

. ok, 0%,
N dw 9%
."“"'moa_‘__"‘—mﬂ x
e ot g .
In order to use the'Rayleigh—Ritz method, we shall expreés the
transversal shift W(El,gg,t)Ein the form
TU(E_,]_, 52} - mE Cmﬂ E) El’ iZ) 3 \ - (6)

where the modal functlons fmn(gl,az) must satisfy all the condi-
tions at the kinematic limit.

In the case of a simple panel resting on its edge (thewucase

to which we shall confine ourselves in the analysis that follows),

the modal functions

do e - - —

fmn( El’ Qz) = gin—- 'mrc_?;'l gin ?LT;E-Z 1 / (7)

K

permit the conditions at the kinematic limit to be adequately
satisfied.

Taking into account equations (2)-(7) from [1], integrating
and, lincconformity with the principle of the minimum of

/238



potential energy, imposing the condition
- 0, (8)
acmn .

we obtain the following system of equations for the coefficients

Cmn:

- . N - ——

Dy o Dy + 20 Dy
. (I_J— M+ 27 B min? 4 B‘“a Wit Rygm® — Hynte? — Z) Con ~

11 11 11 .

__A[ o Am(2p +1 —m)

FiEp D) Gp il —gm) et A (9)
®  Am(2 41 —n)

? Y

=1 (214 1) (2¢ +1 = 2n)

Cm; Slti-n Sin A]——

32 = = mi(2p 4 1 — m) (2t -} 1 — n)

w254 (2pF1) (2041) (2p 1 — 2m) (2041 — 9m)

oD : : '

X [(mz +@2p+1 -—m) =L q:vf~(n‘-‘~—]—(2t+l—-n}2)£ﬂ @ | Corsromintrr-n=0,
X Dy, D, - i

- —

I S : IR

O a2 - 0
Rn“‘;%" Ry = Toe (10)

and

! __z;: Ji~2+_s.iiv is the parameter connected with (11)
. Q, 7', |the eigenvalues, -

A = ¥ Ma (D, n% 1§ the veloclity parameter,

Q3= 74D, f(myat) is the reference frequency

er= ¢/, I xpm'j(moc;lga) is the total damping parameter,

{
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With reference to these gquations we can note the followlng:
a) 1n the case where Q(j) = 0 and A = 0, the coupling of
the modes in the direction ogl igs purely aerodynamic;

b} in the case where ®(J) # 0 and A = 0, the coupling of
the modes can be of an aerodynamic and elastic nature (the
elastic coupling taklng place in the modes from the direction 0f;
as well as in those from the direction 0&,).

In the event that A # 0, present in addition is the coupling /239
of modes from the direction 052 that are cperative in purely
aerocdynamlc terms.

Also worthy of mention is the fact that the system of equa-
tions (9), .particularized for different special cases, coincldes
with:

A) that obtained by Bohon [8] and Kordes and Noll [9] for
the case of anhomogeneous and orthotropic panel (itbbéing assumed
that the elastic axes of orthotropy coincide with the geometrical
axes) and the case of a homogeneous and isotropic panel, it being
assumed in both cases that the panel is placed in a coplanar

gas flow of arbitrary directlong

B) that obtained by Calligeros and Dugundji [5] for the case
of alihomogeneous panel and a gas flow oriented pariallel to the
direction 01 (A = 0);

C) 1t agrees with the system of equations obtained by
Ketter [61].

Returning to the system of flutter equations, the condition
of nontriviality of the solution requires the determinant of the
coefflecients of Cyn to be zero.



Restricting our analysils to the case of the first two modes
in the direction 0&; as well as the direction 0f, (m = 1.2;
n =41.2), the characteristic determinant becomes

il"_ S
> ( ‘ oh—Z & cos A _S2e sin A [__G_i@# ‘E_-lﬁca +
o ' 3 : 3 9x2 \D,, "
: D
‘! ) . f._}_:ﬁ q,a)]
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represents the natural frequencies obtained for damping and elas- /240
tic coupling in the absence of a gas flow. '

Expansion of the determinant leads to the following equation
in the velocity parameter A:
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3. Formulating the Problem of Aercelastic Stability

As 1s known, studying the aerceliastic stabllity of panels in
a linear formulation permits determination of the valué of the
gas veloclty called the flutter veloecity, which is defined as
follows: for the interval 0 £ X < 1Ap, the frequencies of w
satisfy the 1nequality Rey < 0 for which the soclution of equation
(6) is stable or neutrally stable while to the right of Ay, there
exist values of X for which at least one solution of equation (6)
possesses an w that satisfles the inequality Re, > 0. 1In the
latter case, the solution of equation (6) is unstable inasmuch as
the panel undergoes oscilllations of the flutter type.

It can be shown (in this connection see Moveian [100,11]
and Krumhaar [12]) that the determination of the conditlons
leading to definition of the critical flutter characteristics
can be reduced to analysis of the problem's elgenvalues Zp = Zp(A)
at the limit as a functlon of the velocity parameter A, the other
parameters remalning constant.



For an elgenvalue Z,(A)? of the problem at the limit, we
obtain from équation (11) two frequencies wpq(A) and wp,(A)
gilven by

i

R 1 ) T 5 :
Wn,, :( }‘_} = - _2-'" Ep QOZE V(';_ €y Qu) - ngﬂ(}‘) \ ( 15 )
: L Ce - -

One of these two roots, namely, wp,, satisfies the inequality /241
Re(wpy) < 0 for an arbitrary A; this inequality ensues from the

fact that wpy + wp, = -epflg. The second frequency, wp,, satis-

fies the conditions

g

Rg%wﬁg) < 0 or Relwy,) =0 or Relup,) >0 (16)

1f andeonly 1f Z,(A)}1ls located inside, at the boundary of or
outside the stablillty parabola,

If the conditions under cengideration aretthose that corres-
pond to appearance of the threshold of instablility (Re(wnz) = 0)
and 1f we take into account that

Z =ReZ 1 iImz,
(17)

we get from equation (15)

e e

: 1
ReZ = 05%(Im(wn)’,  ImZ = — 05 epTm(en). l \ (17"
Equations (17') 1n the compidex plane Z delimits the poilnts

of the parabola defined by

? It should be stressed that for a value of A > 0, the sequence
of eigenvalues Z1(X}, Zo(2), ... 1s denumerable,
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~called the stabilityvparabola

The inner domaln of the stabillity parabola corresponds to the
élgenvalues ‘fior which the solutions of both Wn, and Wis have real
negative parts, and the outer domain corresponds to the eigenvalues
for which Re(wnz) > 0. Thus, the problem of determining the
critical flutter velocity corresponding to the class of sclutions
of equation (6) reduces to analysis of the manner in which the
problem's eigenvalues 7 are ordered at the limit with respect to
the stabllitywoparabola of equation (18).

The above consilderations permit the proposed flutter problem
to be studied. Thus, starting from the characteristic eguation
obtained, namely, equation (14), taking equation (17) into account
in this equation and separating the real part from the imaginary
part, we get two equations expressed through Zp as well as through
Zp, equations that must be 1dentically satisfied for the
“determinant of equation (11) to be zero.

On the other hand, as was mentioned earlier, the conditions
for flutter to appear are obtained if and only if Zp and Zp are
the coordinates of a point located on the stability parabola.
Taking equation (18) into account in the above-mentiloned equations,
we get the system of equation expressed solely through Zgr, as /242

——trtr

follows:

3w'tsThe concept of stability parabola was introduced for the first
time in the study of the aerocelastic stablility of panels by
Moveian [10], Krumhaar [12], shduStepanov [13] and used in the
same field by Houbolt [14], Grigoliypukuaarid Mikhailov [151,
Calligeros and Dugundli [15], Dowell [16], Ketter [6], #nd
Vasiliyev [17]. 1In the wider context of the stabllity of non-
conservative systems in general, the notion of sgtability
parabola was introduced and generallzed by Leipholz [18, 191,

19
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Any value of Zp that satisfles both parts of equation (19)
corresponds to a flutter point. The eriterion of dynamic in~
stability therefore reduces to the condition that the system of
equations{(19) have at least one common root, a condition that is
satisfled 1f and only 1f Sylvester's determlinant, consisting of

11



the coefficients of the :aboyve equations, 1s zero. An approximate
method of obtaining the common roots of the two equations is the
graphic method, which consists in representing the two polynomials
in the plane of the parameters (Zp,%) and in choosing the point of
intersection corresponding to the most critical flutter case.

In the case of damping eq N 0, the parameter Z that plays the
role of the elgenvalues 1s expressed through

- M(Qi) | (20)

—_—— et

and the conditions that correspond to incipient flutter reduce to

ImZ ~ 0

In this case, instead of the system of equatlions (19), we get
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| __(8_:»i )ﬂ 6420 (1)15
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a system that 1s characterized by the fact that equation (21)2

can be obtalned 1n an exact manner from eguation (21)1 by deriva-
tion with respect to Zg - This brings to light the fact that, in
the event that erg N 0, the critical flutter parameters corres-
ponding to simultaneous solution of the two equations correspond ‘',
to the peak of the curve representing the variation of A as a |
function of Zp or, what comes to the same thing, the point at
which the two branches of the natural frequency spectrum fuse.

Numerical Application, Conclusions

The effect of the variatilon in the angdé of orientation of
the orthotropicity on the critical flutter values will be brought
to light for the case of a plane panel constructed symmetrically
from three orthotropic layers, it being assumed that theoouter
layers have the thickness h, = hy = ¢ and the middle layerit has
the thickness hp = 48 (total thickness h = 469 [sic]. The outer
layers are considered to be constructed from a material with
orthotropy of type 1 and the middle layer, fromia material with
orthotropy of type 2 (see Table 1).

TABLE L .
- ,L,,}_A_.J G - - (..g’?",'
rype of T ¢ _ = - ,
" ori:l}ot‘l_c_gpyt £y E, ; iy b 12
| Type 1 E 10E " 0,0349 0319 05
108 E 0,349 0,0349 0,5

| Type?2

=k,

13



As regards the angles of orilientatlon of the orthotropicity
corresponding to the material of the three layers, it 1s con-
sldered teo be ¢(2) = QCB) = oMy é(l) = ot

The direction of flow of the gas is considered to be parallel
with the axis 0&,.

In the case of the example under consideration, we get the
variation of the flutter velocity A as a function of the angle of
hthotropicity ¢" for different values of the angle &' and dif-
ferent values of the parameters ¢, Rll’ €

The main conclusicn to be drawn from the curves obtained is
JA@hat the maximum value of the critical flutter wvelocity does not

?f//arise in the general case when the principal axes of orthotropy

" coincide withithe panel's geometrical axes (1n this connection,

see Figs. 2-6). This fact reflects the potential capability of
these structures to bring about optimum conditions from the point

of view of flutter requirements.

The same curves bring to light an increase 1n the critical /250
flutfer velocity that corresponds to the increase intthe ratio
¢ = a/b; the same thing happens in the case of an inerease in the
damping parameter €p. As regards the effect of Rll on the
critical flutter velocity, Figs. 2 and 4 and, respectively,
Figs. 2 and 3, show that whlle an 1ncrease in stretching loads
(Rll < @) 1s favorable, the effect of an increase in compression
loads (Rj; > 0) is unfavorable. Fig. 6 contains representations
of the frequency curves that bring to light the points corres-
ponding to the most critical flutter conditions, points obtained
from the intersection of the curves resulting from representation

of equatlons (19)3mardf(19),.

14
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